menu_topo

Fale com o professor Lista geral do site Página inicial Envie a um amigo Autor

Rodas de Capilaridade

Alegação

Imagine duas rodas construídas muito cuidadosamente com eixos paralelos em rolamentos sem atrito. Elas são parcialmente imersas em um líquido. Há um espaço muito estreito entre as porções planas das rodas, fazendo o líquido ser puxado para cima entre elas, por ação capilar. O peso desta porção de líquido exerce forças descendentes em ambas as rodas, então elas deveriam girar em direções opostas. Considerando que a força é pequena, a velocidade também será baixa, dando à coluna capilar tempo bastante para subir para compensar este movimento, mantendo uma altura estável. 

Como sempre, ignore fricção e viscosidade. A coluna de líquido está certamente sendo apoiada por uma força para cima fornecida pelas rodas. A terceira lei de Newton requer que a coluna de líquido exerça uma força descendente nas rodas. Isto seguramente fornece um torque em ambas as rodas. Assim, por que elas não se movem? 

Outra versão, usando polias e correias é mostrada à esquerda. O princípio é o mesmo, assim esperamos que esta funcione tão bem quanto a roda.

Resposta

Nós ignoramos o problema óbvio do tempo que levaria para a capilaridade responder ao movimento da roda. (Deixe a roda se mover muito lentamente.) Há um engano muito mais importante na alegação feita para este dispositivo. A adesão entre a roda e a água que supostamente faz este trabalho não age apenas no vaso capilar estreito entre as rodas, mas também em qualquer lugar onde água entra em contato com a roda. Há forças descendentes devido à água agindo na roda ao redor do nível de água do reservatório, e elas fornecem um torque que se opõe exatamente ao torque devido ao líquido no vaso capilar. Estas forças estão em equilíbrio, e então o sistema permanecerá estático (parado). Qualquer um que olhou cuidadosamente para água em equilíbrio estático em um copo de vidro ou proveta notou o meio-menisco ao redor de toda a extremidade da superfície. Estas forças de adesão entram em equilíbrio enquanto o líquido sobe no vaso capilar, respondendo ao mudar seu o tamanho para alcançar uma condição de equilíbrio muito como outras forças elásticas de contato de material fazem. 

Este é outro caso onde estados final e inicial são indistinguíveis e é o princípio de Stevin que os 'inventores' deveriam ter abordado neste projeto, em sua fase conceitual. 


Copyright © Luiz Ferraz Netto - 2000-2011 ® - Web Máster: Todos os Direitos Reservados

Nova pagina 1